Absolute Continuity of Vitali–Hahn–Saks Measure Convergence Theorems

Wu Junde,1*,***⁴ Zhou Su,² and Cho Minhyung³**

Received

In this paper, we prove the following improved Vitali–Hahn–Saks measure convergence theorem: Let $(L, 0, 1)$ be a Boolean algebra with the sequential completeness property, (G, τ) be an Abelian topological group, ν be a nonnegative finitely additive measure defined on *L*, $\{\mu_n : n \in \mathbb{N}\}\)$ be a sequence of finitely additive *s*-bounded *G*-valued measures defined on *L*, too. If for each $a \in L$, $\{\mu_n(a)\}_{n \in \mathbb{N}}$ is a τ -convergent sequence, for each $n \in \mathbb{N}$, when $\{v(a_{\alpha})\}_{\alpha \in \Lambda}$ convergent to 0 , $\{\mu_n(a_{\alpha})\}_{\alpha \in \Lambda}$ is τ -convergent, then when $\{v(a_{\alpha})\}_{\alpha \in \Lambda}$ convergent to $0, \{\mu_n(a_{\alpha})\}_{\alpha \in \Lambda}$ are τ -convergent uniformly with respect to $n \in \mathbb{N}$.

KEY WORDS: measures; Boolean algebras; Vitali–Hahn–Saks theorem.

Let $(L, 0, 1)$ be a Boolean algebra, (G, τ) be an Abelian topological group, a mapping $\mu: L \to G$ is said to be a finitely additive measure if $a, b \in L$ with $a \wedge b = 0$, then $\mu(a \vee b) = \mu(a) + \mu(b)$. The measure μ is said to be *s-bounded* if for each disjoint sequence $\{a_n\}$ of $(L, 0, 1)$, $\{\mu(a_n)\}\$ is τ -convergent to 0. Let $\{\mu_n : n \in \mathbb{N}\}\$ be a sequence of finitely additive *s*-bounded measures, if for each disjoint sequence $\{a_k\}$ of $(L, 0, 1)$, $\{\mu_n(a_k)\}\$ are τ -convergent to 0 uniformly with respect to $n \in \mathbb{N}$, then $\{\mu_n : n \in \mathbb{N}\}\$ is said to be *uniformly s-bounded*.

Brooks and Jewett (1970) proved the following famous Vitali–Hahn–Saks measure convergence theorem:

Theorem 1'. Let A *be a* σ -algebra, $(X, ||.||)$ *be a Banach space,* ν *be a nonnegative finitely additive measure defined on* A , $\{\mu_n : n \in \mathbb{N}\}\$ *be a sequence of finitely additive s-bounded X-valued measures defined on* A , *too. If for each* $A \in \mathcal{A}$, $\{\mu_n(A)\}_{n\in\mathbb{N}}$ *is a* $\vert\vert.\vert\vert$ -*convergent sequence, for each n* ∈ **N**, $\lim_{\nu(A)\to 0} \mu_n(A) = 0$, *then* $\lim_{y(A)\to 0} \mu_n(A) = 0$ *uniformly with respect to n* $\in \mathbb{N}$.

¹ Department of Mathematics, Zhejiang University, Hangzhou, People's Republic of China.

²City College, Zhejiang University, Hangzhou, People's Republic of China.

³ Department of Applied Mathematics, Kumoh National Institute of Technology, Kyungbuk, Korea.

⁴ To whom correspondence should be addressed at Department of Mathematics, Zhejiang University, Hangzhou 310027, People's Republic of China; e-mail: wjd@math.zju.edu.cn.

That is, if for each $n \in \mathbb{N}$, μ_n is absolutely continuous with respect to v, then $\{\mu_n\}_{n\in\mathbb{N}}$ are absolutely continuous with respect to v uniformly for $n \in \mathbb{N}$.

Vitali–Hahn–Saks theorem has a series of important applications in measure theory and quantum logics (De Simone, 2000).

Now, we are interested in the following problem: If for each $n \in \mathbb{N}$, when $\{v(A_\alpha)\}_{\alpha \in \Lambda}$ convergent to 0, $\{\mu_n(a_\alpha)\}_{\alpha \in \Lambda}$ is $||.||$ -convergent to e_n , then when $\{v(a_\alpha)\}_{\alpha \in \Lambda}$ convergent to 0, $\{\mu_n(a_\alpha)\}_{\alpha \in \Lambda}$ whether are τ -convergent to e_n uniformly with respect to $n \in \mathbb{N}$? That is, whether we can improve the absolute continuity of Vitali–Hahn–Saks theorem?

In this paper, by considering $L \times L$ and using the proof methods of Brooks– Jewett (Brooks and Jewett, 1970), we show that the answer is true.

Our main result is

Theorem 1. *Let* (*L*, 0, 1) *be a Boolean algebra with the sequential completeness property,* (*G*, τ) *be an Abelian topological group,* ν *be a nonnegative finitely additive measure defined on L,* $\{\mu_n : n \in \mathbb{N}\}\$ *be a sequence of finitely additive s*-bounded G-valued measures defined on L, too. If for each $a \in L$, $\{\mu_n(a)\}_{n\in\mathbb{N}}$ *is a* τ -*convergent sequence, for each n* $\in \mathbb{N}$, *when* $\{v(a_{\alpha})\}_{\alpha \in \Lambda}$ *convergent to 0,* ${\mu_n(a_\alpha)}_{\alpha \in \Lambda}$ *is* τ -*convergent to e_n, then when* ${\nu(a_\alpha)}_{\alpha \in \Lambda}$ *convergent to 0,* $\{\mu_n(a_\alpha)\}_{\alpha \in \Lambda}$ *are* τ *-convergent to* e_n *<i>uniformly with respect to n* $\in \mathbb{N}$ *.*

Proof: If the conclusion is not true, there exists $\varepsilon > 0$ and sequences $\{n_k\}$, $\{\delta_k\}$, ${a_k}$ and ${b_k}$, and a τ -continuous group quasi-norm *P* such that $P(\mu_{n_{k+1}}(a_{k+1}) - \tau)$ $\mu_{n_{k+1}}(b_{k+1})$) $> \varepsilon$, $\nu(a_{k+1}) < \delta_{k+1}$, $\nu(b_{k+1}) < \delta_{k+1}$, and $\nu(a) < \delta_{k+1}$, $\nu(b) < \delta_{k+1}$ implies that $P(\mu_{n_i}(a) - \mu_{n_i}(b)) < \frac{\varepsilon}{2^{k+3}}$ for $i \leq k$. Without loss of generality, we may assume that $n_i = i$. So

$$
P(\mu_{k+1}(a_{k+1}) - \mu_{k+1}(b_{k+1})) > \varepsilon,
$$
\n(1)

$$
P(\mu_j(a) - \mu_j(b)) < \frac{\varepsilon}{2^{k+3}}, \ j \le k, \ a \le a_{k+1}, \ b \le b_{k+1}.\tag{2}
$$

Consider $L \times L = \{(c, d) : c \in L, d \in L\}$. Let $c_1 = a_2, d_1 = b_2$ and $i_1 = 2$. If there exists an $i_2 > 2$ such that $P(\mu_{i_2}(c_1 \wedge a_{i_2}) - \mu_{i_2}(d_1 \wedge b_{i_2})) > \frac{\varepsilon}{4}$, then let $(c_2, d_2) = (c_1 \wedge a'_{i_2}, d_1 \wedge b'_{i_2})$. If $(c_1, d_1), \ldots, (c_k, d_k)$ and i_1, \ldots, i_k have been chosen and that there exists an $i_{k+1} > i_k$ such that $P(\mu_{i_{k+1}}(c_k \wedge a_{i_{k+1}}) - \mu_{i_{k+1}}(d_k \wedge a_{i_k})$ $b_{i_{k+1}}$)) > $\frac{\varepsilon}{4}$, then let $(c_{k+1}, d_{k+1}) = (c_k \wedge a'_{i_{k+1}}, d_k \wedge b'_{i_{k+1}})$. Thus, we have

$$
c_{k+1} \leq c_k, \ d_{k+1} \leq d_k, \ c_k \wedge c'_{k+1} = c_k \wedge a_{i_{k+1}}, \ d_k \wedge d'_{k+1} = d_k \wedge b_{i_{k+1}}.\tag{3}
$$

It follows from (2) and (3) that

$$
P(\mu_{i_{k+1}}(c_k \wedge c'_{k+1}) - \mu_{i_{k+1}}(d_k \wedge d'_{k+1})) > \frac{\varepsilon}{4}.
$$
 (4)

$$
P(\mu_{i_k}(c_k \wedge c'_{k+1}) - \mu_{i_k}(d_k \wedge d'_{k+1})) < \frac{\varepsilon}{2^{k+3}}.\tag{5}
$$

Now, we show that there exists a $(c_{k_0}, d_{k_0}) \in L \times L$ and an i_{k_0} such that for all *j* > i_{k_0} , $P(\mu_j(c_{k_0} \wedge a_j) - \mu_j(d_{k_0} \wedge b_j)) < \frac{\varepsilon}{4}$.

In fact, if not, we can obtain disjoint sequence ${c_k \wedge c'_{k+1}}$ and disjoint sequence $\{d_k \wedge d'_{k+1}\}\$ in *L* which satisfy (4) and (5) for all $k \in \mathbb{N}$. Thus, we have

$$
P((\mu_{i_{k+1}}-\mu_{i_k})(c_k\wedge c'_{k+1})-(\mu_{i_{k+1}}-\mu_{i_k})(d_k\wedge d'_{k+1}))>\frac{\varepsilon}{8}, k=1,2,\ldots.
$$

This contradicts the Theorem 1 of Junde and Zhihao (2003). Hence, there exists a $(c_{k_0}, d_{k_0}) \in L \times L$ and an i_{k_0} such that for all $j > i_{k_0}$, $P(\mu_j(c_{k_0} \wedge a_j) \mu_j(d_{k_0} \wedge b_j)) < \frac{\varepsilon}{4}.$

Let $p_1 = i_{k_0}, (h_1, g_1) = (c_{k_0}, d_{k_0}), \mu_i^{(1)} = \mu_{p_1+i}, (a_i^{(1)}, b_i^{(1)}) = (a_{p_1+i} \wedge h'_1,$ $b_{p_1+i} \wedge g'_1$). It follows from (1), (2), and (5) easily that

$$
P(\mu_1(h_1) - \mu_1(g_1)) < \frac{\varepsilon}{2^{1+3}} = \frac{\varepsilon}{16},
$$
\n
$$
P(\mu_2(h_1) - \mu_2(g_1)) > \varepsilon - \frac{\varepsilon}{4}.
$$

So

$$
P((\mu_2 - \mu_1)(h_1) - (\mu_2 - \mu_1)(g_1)) > \varepsilon - \frac{\varepsilon}{4} - \frac{\varepsilon}{16},
$$

\n
$$
P(\mu_i^{(1)}(a_i^{(1)}) - \mu_i^{(1)}(b_i^{(1)})) > \varepsilon - \frac{\varepsilon}{4},
$$

\n
$$
P(\mu_j^{(1)}(a) - \mu_j^{(1)}(b)) < \frac{\varepsilon}{2^{i+3}}, a \le a_i^{(1)}, b \le b_i^{(1)}, j < i.
$$

Let $(c_1^{(1)}, d_1^{(1)}) = (a_1^{(1)}, b_1^{(1)})$. Similarly, we can obtain a $(c_{k_1}^{(1)}, d_{k_1}^{(1)})$ and an i_{k_1} such that for all $j > i_{k_1}$, $P(\mu_j^{(1)}(c_{k_1}^{(1)} \wedge a_j^{(1)}) - \mu_j^{(1)}(d_{k_1}^{(1)} \wedge b_j^{(1)})) < \frac{\varepsilon}{8}$.

Let $p_2 = i_{k_1}, (h_2, g_2) = (c_{k_1}^{(1)}, d_{k_1}^{(1)}), \mu_i^{(2)} = \mu_{p_2+i}^{(1)}, (a_i^{(2)}, b_i^{(2)}) = (a_{p_2+i}^{(1)} \wedge h'_2,$ $b_{p_2+i}^{(1)} \wedge g'_2$). Then $h_1 \wedge h_2 = 0$, $g_1 \wedge g_2 = 0$, and $P(\mu_2(h_2) - \mu_2(g_2)) < \frac{\varepsilon}{32}$, $P(\mu_1^{(1)}(h_2) - \mu_1^{(1)}(g_2)) > \varepsilon - \frac{\varepsilon}{4} - \frac{\varepsilon}{8}$. So,

$$
P((\mu_1^{(1)} - \mu_2)(h_2) - (\mu_1^{(1)} - \mu_2)(g_2)) > \varepsilon - \frac{\varepsilon}{4} - \frac{\varepsilon}{8} - \frac{\varepsilon}{32},
$$

\n
$$
P(\mu_i^{(2)}(a_i^{(2)}) - \mu_i^{(2)}(b_i^{(2)})) > \varepsilon - \frac{\varepsilon}{4} - \frac{\varepsilon}{8},
$$

\n
$$
P(\mu_j^{(2)}(a) - \mu_j^{(2)}(b)) < \frac{\varepsilon}{2^{i+4}}, \ a \le a_i^{(2)}, \ b \le b_i^{(2)}, \ j < i.
$$

Inductively, we can obtain disjoint sequence $\{h_k\}$ and disjoint sequence $\{g_k\}$ of *L*, and a sequence of $\{\mu_1^{(k)}\}$ such that $P((\mu_1^{(k+1)} - \mu_1^{(k)})(h_{k+2}) - (\mu_1^{(k+1)})^2$ $\mu_1^{(k)}(g_{k+2})$) > $\varepsilon - \frac{\varepsilon}{4} - \frac{\varepsilon}{8} - \cdots - \frac{\varepsilon}{2^{k+1}} - \frac{\varepsilon}{32} > \frac{\varepsilon}{16}$ for all $k \in \mathbb{N}$.

This contradicts Theorem 1 of Junde and Zhihao (2003) again, so the theorem is proved. \Box

ACKNOWLEDGMENTS

This Project was supported by research fund of Kumoh National Institute of Technology.

REFERENCES

- Brooks, J. K. and Jewett, R. S. (1970). On finitely additive measures. *Proceedings of the National Academy of Science of the United States of America* **67**, 1294–1298.
- De Simone, A. (2000). Absolute continuity of states on concrete logics. *International Journal of Theoretical Physics* **39**, 615–620.
- Junde, Wu and Zhihao, Ma (2003). The Brooks–Jewett theorem on effect algebras with the sequential completeness property. *Czechoslovak Journal of Physics* **53**, 379–383.